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Subject

A polarimetric measurement of a medium or surface results in a real
4× 4 matrix, called the Stokes scattering matrix or the Mueller matrix of
the object.
Talk: Introduction to the mathematical structure of Mueller matrices.

• Setting: Theory of Transversal Polarization of partially coherent
plane waves.

• Topic: Modeling of the polarization altering properties of linear
media and surfaces.

• Model: Using real 4× 4 Mueller matrices.



Subject

A polarimetric measurement of a medium or surface results in a real
4× 4 matrix, called the Stokes scattering matrix or the Mueller matrix of
the object.
Talk: Introduction to the mathematical structure of Mueller matrices.

• Setting: Theory of Transversal Polarization of partially coherent
plane waves.

• Topic: Modeling of the polarization altering properties of linear
media and surfaces.

• Model: Using real 4× 4 Mueller matrices.



Transversal Polarization Formalisms

Jones formalism:
Light:

(i) Totally polarized plane waves
(ii) Represented by a complex 2× 1 Jones vector

Medium:
(i) Linear and “non-depolarizing” (pout = 1 = pin)
(ii) Represented by a complex 2× 2 Jones matrix

Stokes/Mueller formalism:
Light:

(i) Partially polarized plane waves
(ii) Represented by a real 4× 1 Stokes vector

Medium:
(i) Linear
(ii) Represented by a real 4× 4 Mueller matrix



Stokes Vectors

Definition
A Stokes vector S = [I, Q, U, V]> is a real 4× 1 vector satisfying: (i)
I ≥ 0 and (ii) I2 −

(
Q2 + U2 + V2) ≥ 0 (or p ≤ 1).

We denote the set of Stokes vectors by S .

Convenient representation of a Stokes vector S:

S = I
[

1
pu

]
,

with intensity I ≥ 0, degree of polarization 0 ≤ p ≤ 1 and polarization
state u ∈ S2 (Poincaré sphere).

Stokes vectors in the Theory of Transversal Polarization (TTP)
correspond with four-momentum vectors in the Special Theory of
Relativity (STR). Hence, TTP and STR share the same mathematics!
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TTP and STR Correspondence

Quantity TTP STR
I Intensity Rel. energy E divided by c
Ip , pI Polarization intensity Rel. momentum ‖p‖
p Degree of polarization Normalized speed ‖v‖ /c
u Polarization state Unit velocity vector v/ ‖v‖
β , artanh p Lorentzian angle of pol. Rapidity β

γ , 1√
1−p2

Lorentzian factor of pol. Time dilatation factor γ

‖S‖1,3 Lorentzian length of S Rest energy E0 divided by c

Table : Correspondence between a Stokes vector S = I [1, pu]> in the Theory
of Transversal Polarization (TTP) and the four-momentum vector
P = [E/c, p]> in the Special Theory of Relativity (STR), of a uniformly moving
particle with rest mass m0 = I/ (γc), relativistic mass m = γm0 = I/c, velocity
vector v = (pc)u and relativistic momentum vector p = mv = Ipu.



Mueller Matrices
Introduction

Definition
A Mueller matrix is a real 4× 4 matrix that transforms any Stokes
vector into a Stokes vector. Denote the set of Mueller matrices byM.

Properties

• The setM, together with matrix multiplication, is a monoid.
• Non-singular Mueller matrices represent Helmholtz-reciprocal

media and form a (Lie) group.
• The orthochronous Lorentz group O+ (1, 3) is a subgroup of the

group of Mueller matrices.
• The group of Mueller matrices is (much) larger than O+ (1, 3).
• An analytical characterization forM has not been given yet.
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Mueller Matrices
Numerical characterization

Theorem
[VAN DER MEE, 1993] Let M ∈ M (4, R) satisfying
m2

11 ≥ m2
12 + m2

13 + m2
14, G , diag [1,−1,−1,−1] and A , GM>GM.

Then M ∈ M iff one of the following two situations occurs:

(i) A has one real eigenvalue λ0, corresponding to a positive eigenvector, and
three real eigenvalues λ1, λ2, λ3, corresponding to negative eigenvectors,
and λ0 ≥ max(0, λ1, λ2, λ3).

(ii) A has four real eigenvalues λ, λ, µ and ν but is not diagonalizable. The
eigenvectors corresponding to µ and ν are negative and to the double
eigenvalue λ corresponds a Jordan block of size 2 with positive sign.
Moreover, λ ≥ max(0, µ, ν).



Mueller Matrices
Motivation for an analytical characterization

• Need for a simpler test than van der Mee’s result, directly in
terms of the Mueller matrix elements itself (for reasons of error
propagation through the test algorithm).

• Interpretation in terms of simple polarization effects (e.g., via
factoring).

• Understanding the mathematical structure of Mueller matrices
(e.g., the Lie group structure of the non-singular matrices).



Mueller Matrices
Which are equivalent to a Jones matrix

Mueller matrices which have a corresponding Jones matrix are called
Jones-Mueller matrices.

Non-singular Jones-Mueller matrices have the form aL, with a > 0 and
L ∈ SO+ (1, 3). Explicitly,

M = aγ

[
1 px>

py γ−1R +
(
1 − γ−1) yx>

]
,

with x, y Euclidean unit vectors, 0 ≤ p < 1,
1 ≤ γ , 1/

√
1− p2 < +∞, R ∈ SO (3) and y = Rx.

The subgroup corresponding with a = 1 and p = 0 is SO (3) and
represents retarders (birefringence).
The subset corresponding with a = 1 and R = I3 are the Lorentz
boost matrices, which represent diattenuators (dichroism).
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Analytic Characterizations
Sufficient conditions for M being a Mueller matrix

Define ‖M3‖op , max∀u∈S2 ‖M3u‖3,0.

Theorem
Let x, y ∈ S2 and M3 ∈ M (3; R). If M ∈ M (4; R) is of the form

M = a
[

1 bx>

cy M3 + bcyx>

]
,

with
0 ≤ a, 0 ≤ b ≤ 1, 0 ≤ c ≤ 1,

‖M3‖op ≤ (1− b) (1− c) ,

then M is a Mueller matrix.



Analytic Characterizations
Some Necessary conditions satisfied by Mueller matrices

Infinitely many necessary conditions can be derived for the elements
of a Mueller matrix by substituting particular values for pin and uin in
the conditions 0 ≤ Iout and pout ≤ 1.
The following is a particular, but useful, result.

Theorem
Let x, y ∈ S2 and M3 ∈ M (3; R). Any M ∈ M is necessarily of the form

M = a
[

1 bx>

cy M3 + bcyx>

]
,

with
0 ≤ a, 0 ≤ b ≤ 1, 0 ≤ c ≤ 1.

If b = 1 or c = 1, then M3 = 0.



Analytic Characterizations
Sufficient condition for M to be NOT a Mueller matrix

Define ‖M3‖min , min∀u∈S2 ‖M3u‖3,0.

Theorem
Let x, y ∈ S2 and M3 ∈ M (3; R). If M ∈ M (4; R) is of the form

M = a
[

1 bx>

cy M3 + bcyx>

]
,

with
0 ≤ a, 0 ≤ b ≤ 1, 0 ≤ c ≤ 1,

‖M3‖min > (1 + b) (1 + c) ,

then M is NOT a Mueller matrix.



Analytic Characterizations
A Necessary and Sufficient condition for M to be a Mueller matrix

Let S1 ⊂ S denote the set of Stokes vectors having degree of
polarization 1.

Theorem
In order that a M ∈ M (4; R) is inM, it is necessary and sufficient that M
maps S1 → S .



Analytic Characterizations
Necessary and Sufficient condition for a subset of Mueller matrix

Theorem
Let x ∈ S2. For a M ∈ M (4; R) of the form

M = a
[

1 bx>

cx dI3 + bcxx>

]
to be a Mueller matrix, it is necessary and sufficient that

0 ≤ a, 0 ≤ b ≤ 1, 0 ≤ c ≤ 1

and

max
(∣∣∣∣c− d

1− b

∣∣∣∣ ,
∣∣∣∣c + d

1 + b

∣∣∣∣) ≤ 1.



Analytic Characterizations
Necessary and Sufficient condition: principle

• Let uin ∈ S2 be an input polarization state where the output
degree of polarization pout takes on its maximal value (pout)max.

• The sufficient condition is then equivalent to (pout)max ≤ 1.
• That the condition (pout)max ≤ 1 is also necessary is implied by

the existence of the input polarization state uin where pout
reaches (pout)max.

When we search for the necessary and sufficient condition for a
general Mueller matrix, we run into very complicated and totally
unpractical expressions.
A more clever approach is needed to obtain the necessary and
sufficient condition for a general Mueller matrix.
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Analytic Characterizations
Conclusions so far

• We have an optimal sufficient condition for a matrix to be a
Mueller matrix.

• We have an optimal sufficient condition for a matrix NOT to be a
Mueller matrix.

• We know that the conditions 0 ≤ a, 0 ≤ b ≤ 1, 0 ≤ c ≤ 1 are both
necessary and sufficient.

• We have the necessary and sufficient condition for a particular
subset of simple Mueller matrices.

• We have the analytical characterization of the special set of
Jones-Mueller matrices.



Vectorial Radiative Transfer Theory

• Combining the transversal polarization of partially coherent
plane waves, in terms of the Stokes/Mueller formalism, with the
phenomenological theory of (stationary) scalar radiative transfer
goes back to [Chandrasekhar 1950] and [Rozenberg 1955]. The
result is the well-known Vectorial Radiative Transfer (VRT) eq.

• This model however possesses certain mathematical subtleties,
which are not mentioned in the standard text books and have not
been recognized so far.

• These subtleties are related to the global topology of the
manifold of the underlying Lie group of Mueller matrices.

• As a consequence, a possible discrepancy can arise between (i)
the solution of the VRT equation and (ii) an in situ measurement
of the Stokes vector in the medium.

• This is another motivation for studying the set of Mueller
matrices on a deeper mathematical level and to search for an
analytic characterization of these matrices.
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Vectorial Lambert-Beer (VLB)
Models

A. Infinitesimal model
In a medium without scattering and emission, the VRT eq. reduces to
(along a given fixed LOS)

d
dz

S (z) = −K (z) S (z) . (1)

Eq. (1) describes the transport through our medium over an
infinitesimal extent. Eq. (1) is an infinitesimal model.

B. Finite model
From an experimental point of view, there must exist a Mueller
matrix M such that

S (z) = M (z, z0) S (z0) , (2)

relating the Stokes vectors at z0 and z.
Eq. (2) describes the transport through our medium over a finite
extent. Eq. (2) is (part of) the finite model.
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A Fundamental Question

Question:
Is the VRT infinitesimal model equivalent

to the VRT finite model ?

Answer:
No (in general).



How Can It Go Wrong ?

In the example of the VLB law, with constant extinction matrix K, the
solution of its infinitesimal model is

S (z) = exp (−K (z− z0)) S (z0) .

Although this is the correct solution to the infinitesimal model, this
solution could potentially differ from the finite model.

This would happen for Mueller matrices M that cannot be reached by
the exponential function.
So, if such a medium is characterized by an unreachable Mueller
matrix, then any solution method (numerically or analytically) will
produce the wrong answer⇒ disagreement at experimental
validation!
There is no apparent reason why the Mueller matrix of such a
medium should be in the range of the matrix exponential function.
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The End

�
THANK YOU
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Lie Group Concepts

• Is: (i) algebraically a group, (ii) geometrically a (smooth) manifold.

• Each point of the manifold⇔ an element of the Lie group.
• Tangent plane to the manifold at the identity element is a local

linearization of the manifold. Its points are given the structure of
an algebra: the Lie algebra of the Lie group.

• Each point of this tangent plane⇔ an element of the Lie algebra.
• Locally, the group structure of a Lie group G is reflected in the

structure of its Lie algebra g.
• Exponentiation of an element in g produces an element of G.
• Problem: the map exp : g→ G is often not surjective (i.e. “some

matrices M cannot be reached”).
• Is a consequence of the global topology of the manifold.
• Key concepts: (i) compactness, (ii) connectedness and (iii) simply

connectedness of the manifold.
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Lie Group Topology Effects

• If a Lie group manifold is not connected, then exp cannot reach
group elements on the non-identity component.

Example: full Lorentz group O (1, 3): 4 components. Its subgroup
O+ (1, 3): 2 components.

• If a component of a Lie group is also not simply connected, then
exp is not guaranteed (by general Lie theory) to be surjective.

Example: each component of the Lorentz group is not simply
connected (since SO (3) is not simply connected).

• The map exp may exceptionally be surjective.

Example: the identity component SO+ (1, 3) of the Lorentz group.
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Summary of the VRT problem
The illness:

• The VRT equation is an infinitesimal model and as such, it is a
local model.

• If the group underlying an equation has trivial topology, then:
infinitesimal model⇔ finite model.

• The group of Mueller matrices underlying the VRT problem is
not fully known, but it is already known that it has non-trivial
topology (non-compact, not connected and not simply
connected).

• Consequently, infinitesimal VRT model < finite model!

The cure:
• Supply the information that got stripped away when

formulating the infinitesimal model.
• The lost information is: the global structure of the manifold of

Mueller matrices.
• Determine the component on which the Mueller matrices of the

medium are located (i.e., choose the right “neighborhood”).
• Reformulate the VRT equation on the tangent plane at an element

of this component and solve as usual!
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What is a monoid and a group ?

A monoid is:

• a non-empty set S

• with a binary operation × : S× S→ S
• in which × is associative
• and a unity element 1 ∈ S such that g× 1 = g = 1× g, ∀g ∈ S,

A group is:

• a monoid S
• and ∀g ∈ S exists an inverse element g−1 ∈ S such that

g× g−1 = 1 = g−1 × g.
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