# Characterizing Mueller matrices in Polarimetry

Ghislain R. Franssens

Belgian Institute for Space Aeronomy Ringlaan 3, 1180 Brussels, Belgium

COST Action MP1104 - WG4 Meeting, 19-21/08/2013

## Subject

A polarimetric measurement of a medium or surface results in a real  $4 \times 4$  matrix, called the *Stokes scattering matrix* or the *Mueller matrix* of the object.

Talk: Introduction to the mathematical structure of Mueller matrices.

## Subject

A polarimetric measurement of a medium or surface results in a real  $4 \times 4$  matrix, called the *Stokes scattering matrix* or the *Mueller matrix* of the object.

**Talk**: Introduction to the mathematical structure of Mueller matrices.

- **Setting**: Theory of Transversal Polarization of partially coherent plane waves.
- Topic: Modeling of the polarization altering properties of linear media and surfaces.
- **Model**: Using real  $4 \times 4$  Mueller matrices.

#### Transversal Polarization Formalisms

#### **Jones** formalism:

#### Light:

- (i) Totally polarized plane waves
- (ii) Represented by a complex  $2 \times 1$  *Jones vector*

#### Medium:

- (i) Linear and "non-depolarizing" ( $p_{out} = 1 = p_{in}$ )
- (ii) Represented by a complex  $2 \times 2$  *Jones matrix*

#### Stokes/Mueller formalism:

#### Light:

- (i) Partially polarized plane waves
- (ii) Represented by a real  $4 \times 1$  *Stokes vector*

#### Medium:

- (i) Linear
- (ii) Represented by a real  $4 \times 4$  Mueller matrix

#### **Stokes Vectors**

#### Definition

A Stokes vector  $S = [I, Q, U, V]^{\top}$  is a real  $4 \times 1$  vector satisfying: (i)  $I \ge 0$  and (ii)  $I^2 - (Q^2 + U^2 + V^2) \ge 0$  (or  $p \le 1$ ).

We denote the set of Stokes vectors by  $\mathcal{S}$ .

Convenient representation of a Stokes vector *S*:

$$S = I \begin{bmatrix} 1 \\ p\mathbf{u} \end{bmatrix}$$
,

with intensity  $I \ge 0$ , degree of polarization  $0 \le p \le 1$  and polarization state  $\mathbf{u} \in S^2$  (Poincaré sphere).

#### **Stokes Vectors**

#### Definition

A Stokes vector  $S = [I, Q, U, V]^{\top}$  is a real  $4 \times 1$  vector satisfying: (i)  $I \ge 0$  and (ii)  $I^2 - (Q^2 + U^2 + V^2) \ge 0$  (or  $p \le 1$ ).

We denote the set of Stokes vectors by  $\mathcal{S}$ .

Convenient representation of a Stokes vector *S*:

$$S = I \begin{bmatrix} 1 \\ p\mathbf{u} \end{bmatrix}$$
,

with intensity  $I \ge 0$ , degree of polarization  $0 \le p \le 1$  and polarization state  $\mathbf{u} \in S^2$  (Poincaré sphere).

Stokes vectors in the Theory of Transversal Polarization (TTP) correspond with *four-momentum vectors* in the Special Theory of Relativity (STR). Hence, TTP and STR share the *same mathematics*!

## TTP and STR Correspondence

| Quantity                                   | TTP                       | STR                                              |
|--------------------------------------------|---------------------------|--------------------------------------------------|
| I                                          | Intensity                 | Rel. energy $E$ divided by $c$                   |
| $I_p \triangleq pI$                        | Polarization intensity    | Rel. momentum $\ \mathbf{p}\ $                   |
| p                                          | Degree of polarization    | Normalized speed $\ \mathbf{v}\ /c$              |
| u                                          | Polarization state        | Unit velocity vector $\mathbf{v}/\ \mathbf{v}\ $ |
| $\beta \triangleq \operatorname{artanh} p$ | Lorentzian angle of pol.  | Rapidity $\beta$                                 |
| $\gamma \triangleq \frac{1}{\sqrt{1-p^2}}$ | Lorentzian factor of pol. | Time dilatation factor $\gamma$                  |
| $  S  _{1,3}$                              | Lorentzian length of S    | Rest energy $E_0$ divided by $c$                 |

Table : Correspondence between a **Stokes vector**  $S = I[1, p\mathbf{u}]^{\top}$  in the Theory of Transversal Polarization (TTP) and the **four-momentum vector**  $P = [E/c, \mathbf{p}]^{\top}$  in the Special Theory of Relativity (STR), of a *uniformly moving particle* with rest mass  $m_0 = I/(\gamma c)$ , relativistic mass  $m = \gamma m_0 = I/c$ , velocity vector  $\mathbf{v} = (pc)\mathbf{u}$  and relativistic momentum vector  $\mathbf{p} = m\mathbf{v} = I_p\mathbf{u}$ .

## Mueller Matrices Introduction

#### Definition

A *Mueller matrix* is a real  $4 \times 4$  matrix that transforms any Stokes vector into a Stokes vector. Denote the set of Mueller matrices by  $\mathcal{M}$ .

## Mueller Matrices Introduction

#### Definition

A *Mueller matrix* is a real  $4 \times 4$  matrix that transforms any Stokes vector into a Stokes vector. Denote the set of Mueller matrices by  $\mathcal{M}$ .

#### Properties

- The set  $\mathcal{M}$ , together with matrix multiplication, is a *monoid*.
- Non-singular Mueller matrices represent Helmholtz-reciprocal media and form a (*Lie*) group.
- The *orthochronous Lorentz group*  $O_+$  (1,3) is a subgroup of the group of Mueller matrices.
- The group of Mueller matrices is (much) *larger* than  $O_+$  (1,3).
- An analytical characterization for M has not been given yet.

#### Numerical characterization

#### Theorem

[VAN DER MEE, 1993] Let  $M \in M(4, \mathbb{R})$  satisfying  $m_{11}^2 \geq m_{12}^2 + m_{13}^2 + m_{14}^2$ ,  $G \triangleq diag[1, -1, -1, -1]$  and  $A \triangleq GM^\top GM$ . Then  $M \in \mathcal{M}$  iff one of the following two situations occurs:

- (i) A has one real eigenvalue  $\lambda_0$ , corresponding to a positive eigenvector, and three real eigenvalues  $\lambda_1$ ,  $\lambda_2$ ,  $\lambda_3$ , corresponding to negative eigenvectors, and  $\lambda_0 \geq \max(0, \lambda_1, \lambda_2, \lambda_3)$ .
- (ii) A has four real eigenvalues  $\lambda$ ,  $\lambda$ ,  $\mu$  and  $\nu$  but is not diagonalizable. The eigenvectors corresponding to  $\mu$  and  $\nu$  are negative and to the double eigenvalue  $\lambda$  corresponds a Jordan block of size 2 with positive sign. Moreover,  $\lambda \geq \max(0, \mu, \nu)$ .

#### Motivation for an analytical characterization

- Need for a simpler test than van der Mee's result, directly in terms of the Mueller matrix elements itself (for reasons of error propagation through the test algorithm).
- Interpretation in terms of simple polarization effects (e.g., via factoring).
- Understanding the mathematical structure of Mueller matrices (e.g., the Lie group structure of the non-singular matrices).

Which are equivalent to a Jones matrix

Mueller matrices which have a corresponding Jones matrix are called *Jones-Mueller matrices*.

Which are equivalent to a Jones matrix

Mueller matrices which have a corresponding Jones matrix are called *Jones-Mueller matrices*.

*Non-singular Jones-Mueller matrices* have the form aL, with a > 0 and  $L \in SO_+$  (1,3). Explicitly,

$$M = a\gamma \begin{bmatrix} 1 & p\mathbf{x}^{\top} \\ p\mathbf{y} & \gamma^{-1}R + (1 - \gamma^{-1})\mathbf{y}\mathbf{x}^{\top} \end{bmatrix},$$

with  $\mathbf{x}$ ,  $\mathbf{y}$  Euclidean unit vectors,  $0 \le p < 1$ ,  $1 \le \gamma \triangleq 1/\sqrt{1-p^2} < +\infty$ ,  $R \in SO(3)$  and  $\mathbf{y} = R\mathbf{x}$ .

#### Which are equivalent to a Jones matrix

Mueller matrices which have a corresponding Jones matrix are called *Jones-Mueller matrices*.

*Non-singular Jones-Mueller matrices* have the form aL, with a > 0 and  $L \in SO_+$  (1,3). Explicitly,

$$M = a\gamma \begin{bmatrix} 1 & p\mathbf{x}^{\top} \\ p\mathbf{y} & \gamma^{-1}R + (1 - \gamma^{-1})\mathbf{y}\mathbf{x}^{\top} \end{bmatrix},$$

with  $\mathbf{x}$ ,  $\mathbf{y}$  Euclidean unit vectors,  $0 \le p < 1$ ,  $1 \le \gamma \triangleq 1/\sqrt{1-p^2} < +\infty$ ,  $R \in SO(3)$  and  $\mathbf{y} = R\mathbf{x}$ .

The subgroup corresponding with a = 1 and p = 0 is SO(3) and represents *retarders* (birefringence).

The subset corresponding with a = 1 and  $R = I_3$  are the Lorentz boost matrices, which represent *diattenuators* (dichroism).

Sufficient conditions for M being a Mueller matrix

Define  $||M_3||_{op} \triangleq \max_{\forall \mathbf{u} \in \mathcal{S}^2} ||M_3\mathbf{u}||_{3,0}$ .

#### Theorem

Let  $\mathbf{x}, \mathbf{y} \in S^2$  and  $M_3 \in M(3; \mathbb{R})$ . If  $M \in M(4; \mathbb{R})$  is of the form

$$M = a \begin{bmatrix} 1 & b\mathbf{x}^{\top} \\ c\mathbf{y} & M_3 + bc\mathbf{y}\mathbf{x}^{\top} \end{bmatrix},$$

with

$$0 \le a$$
,  $0 \le b \le 1$ ,  $0 \le c \le 1$ ,  
 $||M_3||_{op} \le (1-b)(1-c)$ ,

then M is a Mueller matrix.

Some Necessary conditions satisfied by Mueller matrices

Infinitely many necessary conditions can be derived for the elements of a Mueller matrix by substituting particular values for  $p_{in}$  and  $u_{in}$  in the conditions  $0 \le I_{out}$  and  $p_{out} \le 1$ .

The following is a particular, but useful, result.

#### Theorem

Let  $\mathbf{x}, \mathbf{y} \in \mathcal{S}^2$  and  $M_3 \in M(3; \mathbb{R})$ . Any  $M \in \mathcal{M}$  is necessarily of the form

$$M = a \begin{bmatrix} 1 & b\mathbf{x}^{\top} \\ c\mathbf{y} & M_3 + bc\mathbf{y}\mathbf{x}^{\top} \end{bmatrix},$$

with

$$0 \le a, \ 0 \le b \le 1, \ 0 \le c \le 1.$$

If b = 1 or c = 1, then  $M_3 = 0$ .

Sufficient condition for M to be NOT a Mueller matrix

Define 
$$||M_3||_{\min} \triangleq \min_{\forall \mathbf{u} \in \mathcal{S}^2} ||M_3\mathbf{u}||_{3,0}$$
.

#### Theorem

Let  $\mathbf{x}, \mathbf{y} \in S^2$  and  $M_3 \in M(3; \mathbb{R})$ . If  $M \in M(4; \mathbb{R})$  is of the form

$$M = a \begin{bmatrix} 1 & b\mathbf{x}^{\top} \\ c\mathbf{y} & M_3 + bc\mathbf{y}\mathbf{x}^{\top} \end{bmatrix},$$

with

$$0 \le a$$
,  $0 \le b \le 1$ ,  $0 \le c \le 1$ ,  
 $\|M_3\|_{\min} > (1+b)(1+c)$ ,

then M is NOT a Mueller matrix.

A Necessary and Sufficient condition for M to be a Mueller matrix

Let  $S_1 \subset S$  denote the set of Stokes vectors having degree of polarization 1.

#### Theorem

In order that a  $M \in M\left(4;\mathbb{R}\right)$  is in  $\mathcal{M}$ , it is necessary and sufficient that M maps  $\mathcal{S}_1 \to \mathcal{S}$ .

Necessary and Sufficient condition for a subset of Mueller matrix

#### Theorem

Let  $\mathbf{x} \in \mathcal{S}^2$ . For a  $M \in M(4; \mathbb{R})$  of the form

$$M = a \begin{bmatrix} 1 & b\mathbf{x}^{\top} \\ c\mathbf{x} & dI_3 + bc\mathbf{x}\mathbf{x}^{\top} \end{bmatrix}$$

to be a Mueller matrix, it is necessary and sufficient that

$$0 \le a$$
,  $0 \le b \le 1$ ,  $0 \le c \le 1$ 

and

$$\max\left(\left|c-\frac{d}{1-b}\right|,\left|c+\frac{d}{1+b}\right|\right) \le 1.$$

Necessary and Sufficient condition: principle

- Let  $\mathbf{u}_{in} \in \mathcal{S}^2$  be an input polarization state where the output degree of polarization  $p_{out}$  takes on its maximal value  $(p_{out})_{max}$ .
- The *sufficient* condition is then equivalent to  $(p_{out})_{max} \leq 1$ .
- That the condition  $(p_{out})_{max} \le 1$  is also *necessary* is implied by the existence of the input polarization state  $\mathbf{u}_{in}$  where  $p_{out}$  reaches  $(p_{out})_{max}$ .

Necessary and Sufficient condition: principle

- Let  $\mathbf{u}_{in} \in \mathcal{S}^2$  be an input polarization state where the output degree of polarization  $p_{out}$  takes on its maximal value  $(p_{out})_{max}$ .
- The *sufficient* condition is then equivalent to  $(p_{out})_{max} \leq 1$ .
- That the condition  $(p_{out})_{max} \le 1$  is also *necessary* is implied by the existence of the input polarization state  $\mathbf{u}_{in}$  where  $p_{out}$  reaches  $(p_{out})_{max}$ .

When we search for the necessary and sufficient condition for a general Mueller matrix, we run into very complicated and totally unpractical expressions.

A more clever approach is needed to obtain the necessary and sufficient condition for a general Mueller matrix.

Conclusions so far

- We have an optimal sufficient condition for a matrix to be a Mueller matrix.
- We have an optimal sufficient condition for a matrix NOT to be a Mueller matrix.
- We know that the conditions  $0 \le a$ ,  $0 \le b \le 1$ ,  $0 \le c \le 1$  are both necessary and sufficient.
- We have the necessary and sufficient condition for a particular subset of simple Mueller matrices.
- We have the analytical characterization of the special set of Jones-Mueller matrices.

 Combining the transversal polarization of partially coherent plane waves, in terms of the Stokes/Mueller formalism, with the phenomenological theory of (stationary) scalar radiative transfer goes back to [Chandrasekhar 1950] and [Rozenberg 1955]. The result is the well-known Vectorial Radiative Transfer (VRT) eq.

- Combining the transversal polarization of partially coherent plane waves, in terms of the Stokes/Mueller formalism, with the phenomenological theory of (stationary) scalar radiative transfer goes back to [Chandrasekhar 1950] and [Rozenberg 1955]. The result is the well-known Vectorial Radiative Transfer (VRT) eq.
- This model however possesses certain mathematical subtleties, which are not mentioned in the standard text books and have not been recognized so far.

- Combining the transversal polarization of partially coherent plane waves, in terms of the Stokes/Mueller formalism, with the phenomenological theory of (stationary) scalar radiative transfer goes back to [Chandrasekhar 1950] and [Rozenberg 1955]. The result is the well-known Vectorial Radiative Transfer (VRT) eq.
- This model however possesses certain mathematical subtleties, which are not mentioned in the standard text books and have not been recognized so far.
- These subtleties are related to the global topology of the manifold of the underlying Lie group of Mueller matrices.

- Combining the transversal polarization of partially coherent plane waves, in terms of the Stokes/Mueller formalism, with the phenomenological theory of (stationary) scalar radiative transfer goes back to [Chandrasekhar 1950] and [Rozenberg 1955]. The result is the well-known Vectorial Radiative Transfer (VRT) eq.
- This model however possesses certain mathematical subtleties, which are not mentioned in the standard text books and have not been recognized so far.
- These subtleties are related to the global topology of the manifold of the underlying Lie group of Mueller matrices.
- As a consequence, a possible discrepancy can arise between (i) the solution of the VRT equation and (ii) an in situ measurement of the Stokes vector in the medium.

- Combining the transversal polarization of partially coherent plane waves, in terms of the Stokes/Mueller formalism, with the phenomenological theory of (stationary) scalar radiative transfer goes back to [Chandrasekhar 1950] and [Rozenberg 1955]. The result is the well-known Vectorial Radiative Transfer (VRT) eq.
- This model however possesses certain mathematical subtleties, which are not mentioned in the standard text books and have not been recognized so far.
- These subtleties are related to the global topology of the manifold of the underlying Lie group of Mueller matrices.
- As a consequence, a possible discrepancy can arise between (i) the solution of the VRT equation and (ii) an in situ measurement of the Stokes vector in the medium.
- This is another motivation for studying the set of Mueller matrices on a deeper mathematical level and to search for an analytic characterization of these matrices.

## Vectorial Lambert-Beer (VLB)

Models

#### A. Infinitesimal model

In a medium without scattering and emission, the VRT eq. reduces to (along a given fixed LOS)

$$\frac{d}{dz}S(z) = -K(z)S(z). \tag{1}$$

Eq. (1) describes the transport through our medium over an infinitesimal extent. Eq. (1) is an *infinitesimal model*.

## Vectorial Lambert-Beer (VLB)

Models

#### A. Infinitesimal model

In a medium without scattering and emission, the VRT eq. reduces to (along a given fixed LOS)

$$\frac{d}{dz}S(z) = -K(z)S(z). \tag{1}$$

Eq. (1) describes the transport through our medium over an infinitesimal extent. Eq. (1) is an *infinitesimal model*.

#### B. Finite model

From an experimental point of view, there must exist a Mueller matrix *M* such that

$$S(z) = M(z, z_0) S(z_0),$$
 (2)

relating the Stokes vectors at  $z_0$  and z.

Eq. (2) describes the transport through our medium over a finite extent. Eq. (2) is (part of) the *finite model*.

## A Fundamental Question

Question:

Is the VRT infinitesimal model equivalent to the VRT finite model?

Answer:

No (in general).

## How Can It Go Wrong?

In the example of the VLB law, with constant extinction matrix *K*, the solution of its infinitesimal model is

$$S(z) = \exp(-K(z-z_0)) S(z_0).$$

## How Can It Go Wrong?

In the example of the VLB law, with constant extinction matrix *K*, the solution of its infinitesimal model is

$$S(z) = \exp(-K(z-z_0)) S(z_0).$$

Although this is the correct solution to the infinitesimal model, this solution could potentially differ from the finite model.

## How Can It Go Wrong?

In the example of the VLB law, with constant extinction matrix *K*, the solution of its infinitesimal model is

$$S(z) = \exp(-K(z-z_0)) S(z_0).$$

Although this is the correct solution to the infinitesimal model, this solution could potentially differ from the finite model.

This would happen for Mueller matrices *M* that cannot be reached by the exponential function.

So, if such a medium is characterized by an unreachable Mueller matrix, then any solution method (numerically or analytically) will produce the wrong answer ⇒ disagreement at experimental validation!

There is no apparent reason why the Mueller matrix of such a medium should be in the range of the matrix exponential function.

## The End



#### References

- [1] Barakat R., Opt. Commun., 38, 3, 159–161, 1981
- [2] Lu S-Y. and R.A. Chipman, J. Opt. Soc. Am. A, 13, , 1106–1113, 1996
- [3] Givens C.R. and A.B. Kostinski, J. Mod. Opt., 41, 3, 471–481, 1993
- [4] van der Mee C.V.M., J. Math. Phys., 34, 11, 5072–5088, 1993
- [5] Degl'Innocenti E.L. and J.C. del Toro Iniesta, J. Opt. Soc. Am. A, 15, 2, 533–537, 1998
- [6] Yushtin K.E. and S.N. Savenkov, Proc. Int. Conf. on Mathematical Methods in Electromagnetic Theory, MMET 98, , 435–437, 1998
- [7] Twietmeyer K.M. and R.A. Chipman, Opt. Express, 16, 15, 11589–11603, 2008
- [8] Boulvert F. and G. Le Brun and B. Le Jeune and J. Cariou and L. Martin, Opt. Commun., 282, 5, 692–704, 2009
- [9] Anderson D.G.M. and R. Barakat, J. Opt. Soc. Am. A, 11, , 2305–2319, 1994
- [10] Simon R., Opt. Commun., 42, 5, 293–297, 1982
- [11] Franssens, G.R., Int. J. Remote Sensing (submitted)

## Lie Group Concepts

• Is: (i) algebraically a *group*, (ii) geometrically a (smooth) *manifold*.

- Is: (i) algebraically a *group*, (ii) geometrically a (smooth) *manifold*.
- Each point of the manifold  $\Leftrightarrow$  an element of the *Lie group*.

- Is: (i) algebraically a *group*, (ii) geometrically a (smooth) *manifold*.
- Each point of the manifold  $\Leftrightarrow$  an element of the *Lie group*.
- Tangent plane to the manifold at the identity element is a local linearization of the manifold. Its points are given the structure of an algebra: the *Lie algebra* of the Lie group.

- Is: (i) algebraically a *group*, (ii) geometrically a (smooth) *manifold*.
- Each point of the manifold  $\Leftrightarrow$  an element of the *Lie group*.
- Tangent plane to the manifold at the identity element is a local linearization of the manifold. Its points are given the structure of an algebra: the *Lie algebra* of the Lie group.
- Each point of this tangent plane ⇔ an element of the *Lie algebra*.

- Is: (i) algebraically a *group*, (ii) geometrically a (smooth) *manifold*.
- Each point of the manifold  $\Leftrightarrow$  an element of the *Lie group*.
- Tangent plane to the manifold at the identity element is a local linearization of the manifold. Its points are given the structure of an algebra: the *Lie algebra* of the Lie group.
- Each point of this tangent plane ⇔ an element of the *Lie algebra*.
- Locally, the group structure of a Lie group *G* is reflected in the structure of its Lie algebra g.

- Is: (i) algebraically a *group*, (ii) geometrically a (smooth) *manifold*.
- Each point of the manifold  $\Leftrightarrow$  an element of the *Lie group*.
- Tangent plane to the manifold at the identity element is a local linearization of the manifold. Its points are given the structure of an algebra: the *Lie algebra* of the Lie group.
- Each point of this tangent plane ⇔ an element of the *Lie algebra*.
- Locally, the group structure of a Lie group *G* is reflected in the structure of its Lie algebra g.
- *Exponentiation* of an element in g produces an element of *G*.

- Is: (i) algebraically a *group*, (ii) geometrically a (smooth) *manifold*.
- Each point of the manifold  $\Leftrightarrow$  an element of the *Lie group*.
- Tangent plane to the manifold at the identity element is a local linearization of the manifold. Its points are given the structure of an algebra: the *Lie algebra* of the Lie group.
- Each point of this tangent plane ⇔ an element of the *Lie algebra*.
- Locally, the group structure of a Lie group *G* is reflected in the structure of its Lie algebra g.
- *Exponentiation* of an element in g produces an element of *G*.
- Problem: the map  $exp : \mathfrak{g} \to G$  is often *not surjective* (i.e. "some matrices M cannot be reached").

- Is: (i) algebraically a *group*, (ii) geometrically a (smooth) *manifold*.
- Each point of the manifold  $\Leftrightarrow$  an element of the *Lie group*.
- Tangent plane to the manifold at the identity element is a local linearization of the manifold. Its points are given the structure of an algebra: the *Lie algebra* of the Lie group.
- Each point of this tangent plane ⇔ an element of the *Lie algebra*.
- Locally, the group structure of a Lie group *G* is reflected in the structure of its Lie algebra g.
- *Exponentiation* of an element in g produces an element of *G*.
- Problem: the map  $exp : \mathfrak{g} \to G$  is often *not surjective* (i.e. "some matrices M cannot be reached").
- Is a consequence of the global *topology* of the manifold.

- Is: (i) algebraically a *group*, (ii) geometrically a (smooth) *manifold*.
- Each point of the manifold  $\Leftrightarrow$  an element of the *Lie group*.
- Tangent plane to the manifold at the identity element is a local linearization of the manifold. Its points are given the structure of an algebra: the *Lie algebra* of the Lie group.
- Each point of this tangent plane ⇔ an element of the *Lie algebra*.
- Locally, the group structure of a Lie group *G* is reflected in the structure of its Lie algebra g.
- *Exponentiation* of an element in g produces an element of *G*.
- Problem: the map  $exp : \mathfrak{g} \to G$  is often *not surjective* (i.e. "some matrices M cannot be reached").
- Is a consequence of the global *topology* of the manifold.
- Key concepts: (i) *compactness*, (ii) *connectedness* and (iii) *simply connectedness* of the manifold.

## Lie Group Topology Effects

• If a Lie group manifold is *not connected*, then *exp* cannot reach group elements on the non-identity component.

Example: full Lorentz group O(1,3): 4 components. Its subgroup  $O_+(1,3)$ : 2 components.

## Lie Group Topology Effects

• If a Lie group manifold is *not connected*, then *exp* cannot reach group elements on the non-identity component.

Example: full Lorentz group O(1,3): 4 components. Its subgroup  $O_+(1,3)$ : 2 components.

• If a component of a Lie group is also *not simply connected*, then *exp* is not guaranteed (by general Lie theory) to be surjective.

Example: each component of the Lorentz group is not simply connected (since SO(3) is not simply connected).

## Lie Group Topology Effects

• If a Lie group manifold is *not connected*, then *exp* cannot reach group elements on the non-identity component.

Example: full Lorentz group O(1,3): 4 components. Its subgroup  $O_+(1,3)$ : 2 components.

• If a component of a Lie group is also *not simply connected*, then *exp* is not guaranteed (by general Lie theory) to be surjective.

Example: each component of the Lorentz group is not simply connected (since SO(3) is not simply connected).

• The map *exp* may exceptionally be surjective.

Example: the identity component  $SO_+$  (1,3) of the Lorentz group.

## Summary of the VRT problem

#### The illness:

- The VRT equation is an infinitesimal model and as such, it is a local model.
- If the group underlying an equation has trivial topology, then: infinitesimal model ⇔ finite model.
- The group of Mueller matrices underlying the VRT problem is not fully known, but it is already known that it has non-trivial topology (non-compact, not connected and not simply connected).

## Summary of the VRT problem

#### The illness:

- The VRT equation is an infinitesimal model and as such, it is a local model.
- If the group underlying an equation has trivial topology, then: infinitesimal model ⇔ finite model.
- The group of Mueller matrices underlying the VRT problem is not fully known, but it is already known that it has non-trivial topology (non-compact, not connected and not simply connected).

#### The cure:

- Supply the information that got stripped away when formulating the infinitesimal model.
- The lost information is: the global structure of the manifold of Mueller matrices.
- Determine the component on which the Mueller matrices of the medium are located (i.e., choose the right "neighborhood").
- Reformulate the VRT equation on the tangent plane at *an element* of this component and solve as usual!

### A monoid is:

• a non-empty set S

### A monoid is:

- a non-empty set S
- with a *binary operation*  $\times : S \times S \rightarrow S$

### A monoid is:

- a non-empty set S
- with a *binary operation*  $\times : S \times S \rightarrow S$
- in which × is associative

#### A monoid is:

- a non-empty set S
- with a *binary operation*  $\times : S \times S \rightarrow S$
- in which × is associative
- and a *unity* element  $1 \in S$  such that  $g \times 1 = g = 1 \times g$ ,  $\forall g \in S$ ,

#### A monoid is:

- a non-empty set S
- with a *binary operation*  $\times$  :  $S \times S \rightarrow S$
- in which × is associative
- and a *unity* element  $1 \in S$  such that  $g \times 1 = g = 1 \times g$ ,  $\forall g \in S$ ,

### A group is:

• a monoid S

### A monoid is:

- a non-empty set S
- with a *binary operation*  $\times : S \times S \rightarrow S$
- in which × is associative
- and a *unity* element  $1 \in S$  such that  $g \times 1 = g = 1 \times g$ ,  $\forall g \in S$ ,

- a monoid S
- and  $\forall g \in S$  exists an *inverse* element  $g^{-1} \in S$  such that  $g \times g^{-1} = 1 = g^{-1} \times g$ .